

Руководство по эксплуатации

Прибор вертикального проектирования

AMO PVP 67

Содержание

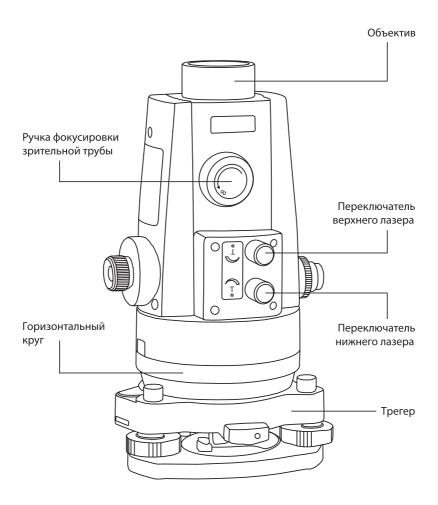
1.	Меры безопасности	4
2.	Комплект поставки	4
3.	Назначение прибора	4
4.	Описание прибора	5
5.	Работа с прибором	6
	5.1 Установка	6
	5.2 Выравнивание круглым уровнем	6
	5.3 Точное выравнивание с помощью цилиндрического уровня	7
	5.4 Центрирование	7
	5.5 Наведение	8
	5.6 Вертикальные измерения	8
	5.7 Измерение вертикального контура	8
	5.8 Вертикальный перенос	9
6.	Юстировка прибора	10
	6.1 Проверка цилиндрического уровня	10
	6.2 Регулировка цилиндрического уровня	10
	6.3 Проверка круглого уровня	10
	6.4 Регулировка круглого уровня	11
	6.5 Проверка/регулировка отклонения оси зрительной трубы	
	от вертикальной оси	11
	6.6 Проверка/регулировка отклонения фокуса лазера	
	и зрительной трубы	11
	6.7 Проверка/регулировка отклонения центра апертуры зрительной	
	трубы и лазерной точки	12
	6.8 Проверка/настройка отклонения оси зрительной трубы	
	и лазерного луча	12
7.	Поиск и устранение неисправностей	12
8.	Технические характеристики	13
9.	Уход и хранение	14

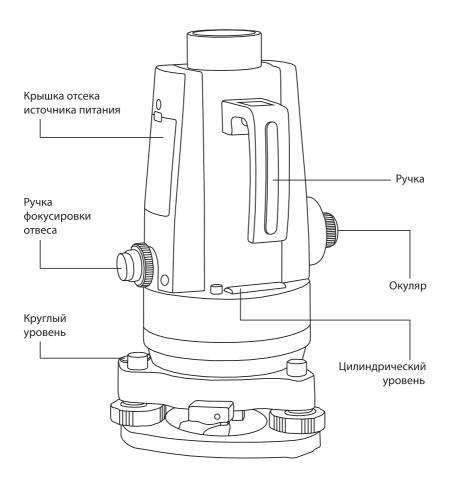
1. Меры безопасности

Прибор вертикального проектирования АМО использует источник лазерного излучения. Не направляйте лазерный луч в глаза или на открытые участки тела. Соблюдайте правила ухода и эксплуатации, не разбирайте, не ремонтируйте и не модифицируйте прибор самостоятельно — это может привести к выходу устройства из строя.

2. Комплект поставки

При покупке прибора проверьте комплектацию:

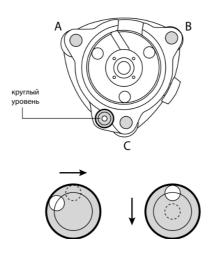

Наименование	Количество
Прибор вертикального проектирования	1 шт.
Пластиковый кейс	1 шт.
Палетка для проектирования	1 шт.
Юстировочные инструменты	1 шт.
Тряпка для очистки оптики	1 шт.
Руководство по эксплуатации	1 шт.


3. Назначение прибора

Прибор вертикального проектирования предназначен для точного переноса точки в надир и зенит. Устройство оснащено источником лазерного излучения, который проецирует хорошо видимую точку на любой поверхности в пределах рабочей дистанции. Прибор оснащен оптической зрительной трубой с 25-кратным увеличением. Передача планового положения может производиться как классическим оптическим методом, так и при помощи лазерного луча, совмещенного с визирной осью зрительной трубы. Для более точного измерения в комплекте предусмотрена лазерная мишень.

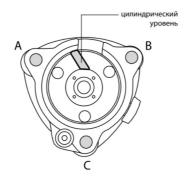
Прибор отличается компактным дизайном и устойчив на любой поверхности. Может использоваться для измерения небольших горизонтальных отклонений, вертикального переноса, определения контура объекта. ПВП широко используется в строительстве, промышленности, инженерных проверках и наблюдениях осадки конструкции, а также в других инженерных изысканиях.

4. Описание прибора


5. Работа с прибором

5.1 Установка

- 1. Установите штатив в точке измерений и расположите прибор на штативе.
- 2. Закрепите его на подставке с помощью центрального винта.
- 3. Отрегулируйте высоту штатива, чтобы расположить окуляр на уровне глаз.
- 4. Настройте штатив, центрируя пузырьковый уровень.
- 5. Включите питание и отрегулируйте фокусировку так, чтобы лазерный луч указывал на позиции.


5.2 Выравнивание круглым уровнем

- 1. Расположите пузырёк в центре колбы с помощью установочных винтов А и В.
- 2. Расположите пузырёк в центре круга с помощью установочного винта С.

5.3 Точное выравнивание с помощью цилиндрического уровня

- 1. Ослабьте горизонтальный зажимной винт, поместите цилиндрический уровень параллельно с линией между установочными винтами А и В.
- 2. Отрегулируйте установочный винт, чтобы поместить пузырёк в центре уровня.
- 3. Поверните уровень на 90° по вертикальной оси.
- 4. С помощью установочного винта С поместите пузырёк в центре цилиндрического уровня.
- 5. Повторяйте шаги выше до тех пор, пока пузырёк не будет оставаться в центре уровня с любой стороны прибора.

5.4 Центрирование

- 1. Включите лазер, отрегулируйте фокусировку отвеса так, чтобы лазерная точка находилась на позиции.
- 2. Ослабьте винт трегера и перемещайте прибор до тех пор, пока центральная метка не совпадёт с точкой отвеса.

- 3. Повторите выравнивание и пункт 2. Убедитесь, что центр лазерной точки совпадает с точкой позиции при вращении алидады прибора в любом направлении.
- 4. Наконец, закрепите трегер снова и выключите лазер, чтобы сэкономить заряд батареи.

5.5 Наведение

- 1. Разместите лазерную мишень на цели.
- Поворачивайте винт окуляра до тех пор, пока перекрестие не будет ясно видно.
- Отрегулируйте фокусировку зрительной трубы так, чтобы изображение мишени стало чётким и свободным от параллакса — не должно быть никакого мнимого движения между перекрестьем и мишенью при небольшом смещении обзора. В противном случае, повторяйте шаги выше до устранения параллакса.

5.6 Вертикальные измерения Оптическое проектирование

- Выравнивая инструмент, обнулите значения, затем снимите показания с первой точки.
- Поверните прибор на 180° и снимите показания со второй точки. С
- 3. реднее этих двух точек будет являться конечным результатом. Повторение шагов выше обеспечит точность измерений.

Лазерное проектирование

- 1. Вы можете включить или выключить верхний и нижний лазеры посредством переключателя. Включите верхний лазер луч начнёт проецироваться через зрительную трубу.
- 2. Сфокусируйте лазерную точку на мишени и снимите показания с точки.
- Повторите шаги оптического проектирования это повысит точность измерений.

Примечание: во время работы верхнего лазера наблюдение через окуляр запрещено.

5.7 Измерение вертикального контура

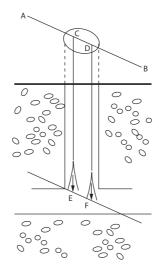
Поместите штатив и установите на него инструмент, отрегулируйте установочные винты так, чтобы круглый и цилиндрический уровень сохраняли центральное положение при повороте прибора в любую сторону.

Оптическое измерение

- 1. Отрегулируйте окуляр до ясной видимости перекрестья.
- 2. Разместите лазерную мишень близко к объекту, настройте фокус так, чтобы мишень была хорошо видна. Между мишенью и перекрестьем не должно быть никаких искажений. Если присутствует эффект параллакса, отрегули-

- руйте фокус, чтобы устранить его. Снимите значение лазерной мишени.
- 3. Перемещайте лазерную мишень через равные интервалы по вертикали и повторяйте пункт 2. Вертикальный контур объекта может быть измерен.

Лазерное измерение


- 1. Отрегулируйте объектив так, пока перекрестье не будет хорошо видно.
- 2. Разместите лазерную мишень рядом с объектом, настройте фокус до тех пор, пока лазерная точка не достигнет минимальных размеров, считайте указанное значение.
- 3. Смещайте лазерную мишень на равные интервалы по вертикали, повторяя пункт 2. Вертикальный контур объекта может быть измерен.

5.8 Вертикальный перенос

В инженерных или горнопромышленных исследованиях при необходимости связи наземного и подземного уровня известную наземную координату или азимут требуется перенести под землю.

Как показано на рисунке, азимут АВ известен, точка С и точка D на линии АВ — точки переноса.

- 1. Установите инструмент и включите верхний лазер, перемещайте прибор до тех пор, пока лазер не совпадёт с точкой С.
- 2. Включите нижний лазер. Лазерная точка E на полу шахты соотносится с точкой C.
- 3. Повторите пункт 1 для точки D и получите точку F подобно пункту 2.
- 4. Соедините точки E и F азимут линии EF идентичен азимуту линии AB.
- 5. Следуя процедуре выше вы можете проводить и другие аналогичные измерения.

6. Юстировка прибора

Прибор вертикального проектирования — высокоточный продукт, перед продажей производится его тщательная проверка. По прошествии определённого времени эксплуатации прибор требует повторной проверки и калибровки. Часть процедур пользователь может выполнить самостоятельно, остальные процедуры производятся квалифицированным специалистом.

Внимание!

Не разбирайте прибор самостоятельно! Это может привести к неустранимой поломке устройства.

6.1 Проверка цилиндрического уровня

- 1. Установите прибор на устойчивое основание (например, штатив или регулируемое основание) и зафиксируйте его.
- 2. При выравнивании прибора поместите цилиндрический уровень параллельно линии между двумя установочными винтами. Отрегулируйте винты так, чтобы пузырёк оказался в центре цилиндрического уровня.
- 3. Поворачивайте прибор на 180° и следите, остаётся ли пузырёк в центре уровня. Если пузырёк не смещается, никакой регулировки не требуется. Если пузырёк сместился, осуществите регулировку

6.2 Регулировка цилиндрического уровня

- 1. Установите прибор на устойчивое основание и закрепите.
- 2. Выровняйте прибор.
- 3. Поворачивайте прибор, размещая уровень параллельно линии между двумя установочными винтами. Отрегулируйте винты таким образом, чтобы пузырёк оказался в центре уровня.
- 4. Поверните прибор на 90° по часовой стрелке, настраивая установочные винты таким образом, чтобы снова привести пузырёк в центр уровня.
- 5. Поверните прибор на 90° по часовой стрелке, поместите пузырёк на полпути к центру уровня, регулируя установочные винты с помощью установочного штифта.
- 6. Повторите пункты 3, 4 и 5 до тех пор, пока пузырёк не будет оставаться в центре при повороте прибора в любую позицию.

6.3 Проверка круглого уровня

- 1. Установите прибор на устойчивое основание и закрепите.
- 2. Выровняйте инструмент по цилиндрическому уровню, убедитесь, что пузырёк кругового уровня находится в центре. Если пузырёк цилиндрического уровня центрирован, никакой регулировки не требуется. Если пузырёк смещён, продолжайте регулировку.

6.4 Регулировка кругового уровня

- 1. Установите прибор наустойчивое основание и закрепите.
- 2. Выровняйте прибор по цилиндрическому уровню.
- 3. Сместите пузырёк к центру посредством регулировки двух винтов с помощью установочного штифта.

Примечание: при регулировке двух установочных винтов установочным штифтом не нажимайте слишком сильно.

6.5 Проверка/регулировка отклонения оси зрительной трубы от вертикальной оси

Если вы обнаружите отклонение между изображением мишени и перекрестьем при повороте прибора на 180°, ось зрительной трубы не совпадает с вертикальной осью и требуется регулировка.

- 1. Установите прибор на штатив или устойчивое основание, разместите бумажный лист с перекрестьем в 10 м над прибором или установите коллиматор на вертикальном направлении, наведитесь на мишень на бумаге или коллиматоре и настройте фокус.
- 2. Считайте значение с помощью зрительной трубы.
- 3. Поверните инструмент на 180° и снова считайте значение.
- 4. Если между показаниями присутствует отклонение, требуется регулировка по следующей процедуре: снимите крышку возле окуляра, отрегулируйте 4 винта вокруг креста визирных нитей, пока перекрестье не станет совпадать с изображением при повороте прибора в любом направлении. Установите крышку на место (возле окуляра) для завершения регулировки.

6.6 Проверка/регулировка отклонения фокуса лазера и зрительной трубы

- 1. Наведитесь на цель с помощью зрительной трубы и настройте фокус. Включите верхний лазер.
- 2. Если размер лазерной точки на цели минимален, регулировка не требуется, иначе продолжайте регулировку.
- 3. Сначала установите мишень, наведитесь на мишень с помощью зрительной трубы и настройте фокус. Изображение мишени и перекрестье трубы должны быть чёткими и хорошо видимыми. Снимите крышку возле окуляра и открутите 4 винта на крышке лазера. Удалите её. Включите верхний лазер и ослабьте два фиксирующих винта с обеих сторон, настройте 4 винта вертикального направления на гнезде лазера таким образом, чтобы лазерная точка на мишени достигла минимального размера. Затяните фиксирующие винты и установите крышку на место.

6.7 Проверка/регулировка отклонения центра апертуры зрительной трубы и лазерной точки.

Центр апертуры зрительной трубы должен совпадать с центром лазерной точки. Если они не совпадают, требуется регулировка.

- 1. Поместите белый лист бумаги в 2-3 метрах над прибором, включите верхний лазер и вращайте регулировочную ручку фокуса до тех пор, пока лазерная точка не примет максимальный размер. Точка должна представлять из себя ровный круг, а свет должен быть однородным в противном случае требуется регулировка по следующей процедуре:
- 2. Удалите крышку лазера, настройте 4 винта на регулировочной плате, отслеживая изменения лазерной точки. Продолжайте процедуру до тех пор, пока точка не примет надлежащий вид.

6.8 Проверка/настройка отклонения оси зрительной трубы и лазерного луча

Если после фокусировки лазерного луча лазерная точка не совпадает с перекрестьем визирных нитей, ось зрительной трубы не совпадает с лазерным лучом. Требуется регулировка по следующей процедуре:

Установите мишень аналогично разделу 6.3, точно наведитесь на цель, удалите крышку лазера и настройте 4 винта в горизонтальном направлении на гнезде лазера таким образом, чтобы лазерная точка всегда совпадала с центром перекрестья зрительной трубы при повороте прибора в любом направлении.

7. Поиск и устранение неисправностей

Описание	Причина	Исправление
Луч лазера слабый	Недостаточное питание	Замените батареи
или отсутствует	Поломка диода лазера	Обратитесь в сервис- ный центр
	Ошибка фокуса	Перенастройте фокус
Не происходит фокусировка точки	Не совпадает фокус зрительной трубы и лазера	см. соотв. раздел в гл. 6
Точка имеет не круглую форму	Не совпадает ось зрительной трубы и лазера	см. соотв. раздел в гл. 6
Расхождение измерений	Не совпадает ось зрительной трубы и вертикали	см. соотв. раздел в гл. 6
Большие колебания лазерной точки	Не совпадает лазерный луч и вертикаль	см. соотв. раздел в гл. 6
Пузырек уровня не центируется	Основание не перпендикулярно отвесу	см. соотв. раздел в гл. 6

8. Технические характеристики

Характеристика	Значение		
Точность (верхний лазер)	±2,5 мм /100 м		
Точность (нижний лазер)	±1 мм /1,5 м		
Чувствительность пузырькового уровня	20″/2 мм		
	Диаметр диафрагмы	30 мм	
	Увеличение	25x	
Визир	Поле видимости	1°30′	
- SNSNIP	Минимальное фокусное расстояние	1 м	
	Изображение	Обратное	
	Длина волны	635 нм, класс 2	
	Дальность действия	Днем ≥120 м Ночью ≥300 м	
	Диаметр лазерной точки	40 m: ≤4 mm 100 m: ≤6 mm	
Лазер (верхний)	Погрешность между осью коллимации и вертикальной осью	≤5″	
	Погрешность между оптической осью лазера и осью коллимации	≤5″	
	Минимальное фокусное расстояние	0,5 м	
Лазерный отвес	Погрешность	≤1 MM	
	Автовыключение	5 мин	
Рабочая температура	от -10 до +40 °С		
Размер	130×110×244 мм		
Bec	2,9 кг		

9. Уход и хранение

Избегайте попадания пыли и абразивных частиц в прибор. Соблюдайте осторожность при работе в сильно запылённых или влажных помещениях. После работы прибор нуждается в очистке. Грязь удаляют, используя мягкую, сухую ткань. Не используйте растворители, такие, как бензин, ацетон и другие. Прибор необходимо хранить в сухом, защищённом от пыли месте. Перед размещением на хранение извлеките элементы питания.

